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Abstract 

This paper introduces the spatial twist continuum (STC), a powerful extension of the dual of a hexahedral mesh. The STC 
captures the global connectivity constraints inherent in hexahedral meshing. We begin by describing the two-dimen- 
sional analog of the representation for quadrilateral meshes: The STC of a quadrilateral mesh is an arrangement of curves 
called chords. Chords pass through opposite quadrilateral edges and intersect at quadrilateral centroids. The power of 
the STC is displayed in 'Lhe three-dimensional representation, where continuous surfaces called twist planes pass through 
layers of hexahedra. Pairs of twist planes intersect to form chords that pass through opposite faces of hexahedra. Triples 
of twist planes orthogonally intersect at the centroids of hexahedra. The continuity of the twist planes and chords, and 
how twist planes and chords twist through space, are the basis of the spatial twist continuum. © 1997 Elsevier Science B.V. 

1. Introduction 

The  d e m a n d  for fully a u t o m a t e d  meshing  a lgor i thms  for general  th ree -d imens iona l  volumes  has 
increased d ramat ica l ly  in recent  years.  Increased  c o m p u t e r  h a rd ware  speeds and  im pro v ed  finite 
e lement  analysis  a~Ld mode l ing  sof tware  now  m a k e  it possible to  analyze  larger  p rob lems  than  in 
the past.  Mesh ing  d one  using t rad i t iona l  techniques  takes a large f rac t ion of  the to ta l  so lu t ion  time, 
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and can be a serious bottleneck in the overall analysis process. Thus, the need for automated 
techniques. 

Automated meshing algorithms for general three-dimensional volumes usually yield either 
tetrahedral or hexahedral elements. Generation of a tetrahedral mesh is a less constrained problem 
than for a hexahedral mesh, and therefore easier to solve. Hence, tetrahedral meshing algorithms 
have historically received the most attention [1-5]. However, the demand for all-hexahedral 
meshing algorithms remains strong due to various analysis and design benefits associated with 
hexahedral meshes. 

A number of techniques have been developed that are successful in meshing simple geometries 
[6-10]. These work by interpreting the input geometry in some global way. These methods break 
down when the input geometry is complicated, in part because interpreting the global geometry is 
difficult. A robust method based only on the local geometry is to overlay a regular grid and trim to 
the surface [11], but poorly shaped elements result near the geometric boundary. Plastering [12] is 
an advancing-front type of algorithm that takes a local approach to the geometry and shows 
promise for complicated inputs. However, the major difficulty with advancing-front type of 
algorithms is ensuring that hexahedra share faces, edges, and nodes in the correct way when fronts 
contact or are merged. This problem is more difficult for hexahedral meshes than for tetrahedral 
meshes: the global connectivity of the hexahedral mesh behind the front constrains how hexahedra 
on merging fronts may share faces, edges and nodes. Although some of these problems can be 
resolved using local corrections [13], it seems that some global connectivity information is 
necessary. 

The spatial twist continuum (STC) is a powerful extension of the dual representation of a hexa- 
hedral mesh. The STC quantifies global connectivity constraints inherent in hexahedral meshes. 
This provides numerous insights into how to generate meshes. The STC is represented by 
a geometric arrangement of two-dimensional surfaces called twist planes. The intersection of three 
twist planes defines a hexahedral element of the mesh. These planes "twist" through the space of the 
three-dimensional continuum being meshed, thus, the name spatial twist continuum. 

Whisker weaving [14] is an advancing-front type of algorithm that is based primarily on the 
STC. With the global connectivity information of the STC, advancing and merging fronts is 
a straightforward operation that results in little perturbation of the mesh behind the fronts. This 
whisker weaving technique shows a practical application of the concepts presented in this paper. 

The remainder of this paper describes the basic structures of the STC. Section 2 introduces the 
STC using the dual of a two-dimensional quadrilateral mesh. Section 3 demonstrates the power of 
the STC in the full three-dimensional case. Section 3 also notes the important role that the 
two-dimensional STC of a surface mesh plays in determining the possible meshes of the interior 
volume. Section 4 provides some brief remarks about the possible application of the STC to 
hexahedral meshing algorithms. Conclusions follow in Section 5. 

2. Dual of a quadrilateral mesh 

A quadrilateral mesh can be uniquely described by its dual [14]. Fig. 1 (left) shows the dual for 
a simple quadrilateral mesh. The dual entities of dimension 0, 1 and 2 are called STC centroids, 
STC edges, and STC 2-cells. Only the connectivity of the dual is important here: the geometric 
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Fig. 1. Dual of a quadrilateral mesh (left). A chord of the STC (right). 

Table 1 
Correspondence of mesh entities to STC dual entities 

Mesh e~Ltity Dimension STC entity Dimension 

Face 2 Centroid 0 
Edge 1 Edge 1 
Node 0 2-Cell 2 

position of the centroids is taken to be somewhat arbitrary. What is important is which centroids 
are connected to each other by STC edges, the clockwise order of the STC edges around a centroid, 
and that STC edges do not cross each other. STC edges may be embedded as curves. 

The connectivity of the dual can be constructed by first placing a centroid in each quadrilateral. 
Next, wherever two quadrilaterals share a mesh edge, an STC edge is added to join the correspond- 
ing centroids. To simplify the description of the 2D chords below, the usual dual centroid at infinity 
and the dual centroids for input region holes are not included in the definition of the mesh dual used 
in this paper. However, STC edges that are dual to quadrilateral edges on the boundary of the 
input are constructed. One vertex of such an STC edge is a centroid, the other is a point on the 
input boundary. This construction is shown in Fig. 1 left. 

Each centroid hams four STC edges, since each quadrilateral has four sides. A 2-cell is the dual of 
a mesh node. The boundary of the 2-cell is the "polygon" of STC edges which are dual to the mesh 
edges containing the given mesh node, possibly together with a portion of the input boundary. 
Since the embedding is unimportant, the "polygon" may have curved sides, etc. The number of STC 
edges bounding a 2-cell is equal to the number of mesh edges attached to the corresponding node. 

Note that a mesh entity of dimension d corresponds to a dual STC entity of dimension 2 - d; see 
Table 1. For example, a mesh face (dimension 2) corresponds to a STC centroid (dimension 0). 

2.1. 2D chords 

Any type of mesh admits a dual [9], but an all-quadrilateral mesh dual has a unique property. 
Namely, portions of the dual can be logically grouped, allowing a "higher level" interpretation of 
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the mesh and the global connectivity of its elements. Dual edges that correspond to opposite sides 
of a quadrilateral are grouped into a continuous curve called a chord. Fig. 1 (right) highlights one 
chord from the mesh in Fig. 1 (left). A chord actually represents a one-dimensional stack of 
elements. In effect, the quadrilateral mesh can be viewed as an intertwining of chords (or rows of 
elements) rather than as a collection of individual elements. The crossings formed by these 
intertwined chords are the elements, and how the chords intertwine dictates the validity and gross 
quality of the actual mesh. With this perspective in mind, the following properties of chords in 
a valid mesh can be identified: 
(1) A chord that begins on the boundary of the input region must terminate on the boundary of the 

input region. This is equivalent to the fact that a quadrilateral mesh must have an even number 
of edges around its boundary [7]. 

(2) A chord that does not begin on the boundary must be a closed curve. 
(3) Chords may cross each other multiple times, but such crossings may not be consecutive (i.e. if 

two chords cross at centroids i and 2, then on at least one of the chords centroids 1 and 2 must 
be non-consecutive). This forbids two quadrilaterals that share two edges. 

(4) A chord is allowed to cross itself, but not in a local sense (i.e. between the first and second time 
a chord passes through a given centroid, there must be at least four other centroids). 

(5) Each centroid is passed through exactly twice, either by two distinct chords or by one chord 
twice (e.g. three chords being coincident is forbidden). Also, chords are nowhere tangent. 

(6) Each chord has at least one centroid. 
In addition, STC 2-cells have the following properties: 

(7) The portion of the object's boundary touched by a STC 2-cell is a connected set. Furthermore, 
a STC 2-cell touches at most one boundary node. This ensures that the object's boundary is 
correctly captured by the mesh. 

(8) Two STC 2-cells have at most one STC edge in common. This prevents two mesh nodes from 
sharing two edges. 

Any nonempty arrangement of curves inside an input region that satisfy these conditions defines 
a valid quadrilateral mesh. Pathological connectivity is ruled out, but beyond that there is no 
guarantee that the mesh will have well-shaped elements, even after smoothing. The chord and 
centroid representation provides a simple, but powerful, dual method for defining the basic 
connectivity rules for all quadrilateral meshes. 

3. Hexahedral meshes and the 3D STC 

Analogous to the two-dimensional case there are base entities and associated constructs that 
make up the STC for a three-dimensional all-hexahedral mesh. A hexahedral element has six 
quadrilateral faces and eight three-edged corners. The connectivity of an all hexahedral mesh 
requires that neighboring hexahedra share common faces. Thus, by the very nature of the 
hexahedral element and based solely on its requirement to share faces with neighboring elements, 
there exists a well-defined connectivity construction. As in the quadrilateral mesh case, this 
construction, the STC, is defined using a logical grouping of portions of the dual of the hexahedral 
mesh. First we will examine the hexahedral mesh dual and then define the chords and twist plane 
constructs which define the spatial twist continuum. 
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A hexahedral mesh is uniquely described by the STC entities introduced earlier (i.e. STC 
centroids, edges, and 2-cells) and a three-dimensional entity called a STC 3-cell. By definition, in 
three dimensions a mesh entity of dimension d corresponds to a dual entity of dimension 3 - d; see 
Table 2. This dual can be constructed similar to the 2D case. A centroid is placed in each 
hexahedron. A STC dual edge is constructed by joining the centroids of elements that share a face. 
Thus, 6 edges emanate from each centroid. A 2-cell is the "polygon" of STC edges that are dual to 
the mesh faces containing a given mesh edge, possibly together with part of the input boundary. As 
in 2D, the 2-cell could have any number of sides, equal to the number of faces sharing the edge. 
Likewise, a 3-cell i,; the "polyhedron" of STC 2-cells dual to the mesh edges containing a given 
mesh node, possibly together with part of the input boundary. The 3-cell could have any number of 
2-cell facets, equal to the number of edges sharing the node. Fig. 2 shows a simple hexahedral mesh 
composed of four elements and its dual, with 2-cells shown as shaded surfaces. In this example, the 
3-cells are all cubic. As with the 2D quad mesh, any 3D mesh admits a dual, but a hexahedral mesh 
dual has some unique properties and constructs defined below. 

Table 2 
Correspondence of hex mesh entities to 3D STC dual entities 

Mesh entity Dimension STC entity Dimension 

Hex element 3 Centroid 0 
Face 2 Edge 1 
Edge 1 2-Cell 2 
Node 0 3-Cell 3 

Fig. 2. A simple four hex mesh and its dual. The 2-cells devide volume inside the mesh into 3-cells, one for each exterior 
hex mode. 
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Fig. 3. The STC of a four hex mesh. Like colored surfaces are the same twist plane. 

3.1. 3D chords 

One such construct for the 3D STC is a chord. As in the 2D case, a 3D chord is a one-dimensional 
curve. A chord for a hexahedron is constructed by grouping the two STC edges that are dual to 
opposing faces. Fig. 3 labels the chords for the upper left hex. A hexahedron may be defined as the 
intersection of three chords, since the chords are continuous through the element. A chord also 
extends into the surrounding mesh as follows: if two hexahedra share a face, the chords through 
that face are grouped together. Thus, a chord represents a continuous stack of hexahedral elements. 
This stack either starts and stops on the input boundary, or closes on itself. In Fig. 3, chord 
x passes through the top two hexes and stops where the input boundary is met. 

3.2. Twist planes 

The real power of the STC can be seen through the two-dimensional construct termed a twist 
plane. A twist plane is formed by grouping the 2-cells which are logically perpendicular to a chord 
at a centroid, as shown in Fig. 3. In this figure, twist plane xy is logically perpendicular to chord 
z at centroid xyz. A twist plane within a single hexahedron will cut four faces, which form a cycle. 
Each hexahedron contains three such twist planes and the STC centroid is actually the intersection 
of these three as shown in Fig. 3 (centroid xyz  can be viewed as the intersection of twist planes xy, 
yz, and xz). Note that a twist plane contains the two chords of the hexahedron that it is not 
perpendicular to. In Fig. 3, twist plane xy  contains chord x and chord y. Chords remain on a twist 
plane, and thus a twist plane can alternatively be defined by the chords it contains. 

As with the chord construct, twist planes extend continuously through the mesh as follows: If 
two hexahedra share a mesh edge, the twist planes through that edge are grouped together. Thus, 
a twist plane represents a continuous "layer" of hexahedral elements in the mesh. Fig. 3 shows how 
a twist plane (twist plane xy) passes through the four hexes of the example mesh. 
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Fig. 4. How the planes twist as a chord changes position. 

3.3. Symbiosis of chords and twist planes 

From the above definitions of chords and twist planes one can see that the definitions are 
coupled. A chord may be defined as the intersection of two twist planes. Alternatively, a twist plane 
can be defined by the chords that it contains (the exact geometric embedding of the twist plane is 
not unique, but its combinatorial structure is completely specified). Hexahedra can be derived from 
either description, either as the intersection of three twist planes, or as the intersection of three 
chords. Chords, however, cannot be used independently of twist planes to define a hexahedral 
mesh. Although an arrangement of surfaces may be quite general and still define the twist planes of 
a valid STC, an arrangement of curves in 3D must be highly structured in order to be able to define 
them as chords and extract twist planes. 

Taking the view 1:hat twist planes define chords, the position of the twist planes in space defines 
the position of the chords of intersection. In alternate view that chords define twist planes, the 
location of the twist planes is defined by some smooth interpolation of the location of the chords. 
Hence, if a chord changes position, but stays on one twist plane (see Fig. 4b), then the other twist 
plane containing it must change position ("twist") to match it (see Fig. 4c). These relationships are 
shown in Fig. 4. Tile key element is that a chord stays on both twist planes 

3.4. Surface loop chords 

The intersection of a twist plane with the boundary of the object being modeled creates a surface 
loop chord. This loop chord is continuous around the boundary. The loop chord differs from 
a three-dimensional chord since it lies on the faces of the surface and does not pass through 
a hexahedral centroid. A loop chord can also be thought of as a chord of the two-dimensional STC 
of the surface mesh. Fig. 5 shows loop chords as thick lines. An important feature of a surface loop 
is that it always closes upon itself (since the object's surface is closed). There are no limitations to 
the number of surface loops associated with a given twist plane: each connected component of the 
intersection of the twist plane with the object boundary creates a separate surface loop. A twist 
plane with no surface loops corresponds to a closed surface (e.g. a topological sphere) entirely 
inside the mesh. A cylindrical twist plane may form two surface loops, etc. 

The surface loop chords play an important role in any advancing-front type of algorithm. If 
a surface mesh is given, then the intersections of twist planes with the geometric surface are already 
determined: However, elements are added inside the volume, the resulting twist planes must 
coincide with the predetermined surface loops on the geometric boundary, or the surface mesh 



144 P. Murdoch et al./ Finite Elements in Analysis and Design 28 (1997) 137-149 

Fig. 5. Surface loops for an example mesh. 

must be changed. The same applies to the two-dimensional surface loops that exist on any meshing 
front: as fronts merge the twist planes must respect the loops, or the loops must be changed by 
modifying the mesh behind the front. 

3.5. Connectivity configurations 

To gain some intuition about how twist planes can interact within a mesh, several examples of 
twist plane constructs (or states) have been identified. The basic constructs defined here include 
parallelism, the orthogonal connectivity, the fold and the corner. 

Two twist planes are said to be (locally) parallel if they pass through hexes that share a face but 
do not intersect each other. The layers of hexahedra formed by parallel twist planes lie directly on 
top of each other. This parallelism may continue throughout  the mesh, or be disrupted by the folds 
and corners that are defined below. 

The orthogonal connectivity corresponds to a regular mesh: each internal node is connected to 
8 elements. In this state, two nearby twist planes are either parallel or perpendicular to each other 
throughout  the entire construct. For example, the orthogonality state and the three-dimensional 
hexagonal mesh it defines is shown in Fig. 6. A fold is defined when two locally parallel twist planes 
change to become perpendicular; see Fig. 7. A fold results in a triangular STC 2-cell on a twist 
plane orthogonal to the first two. This triangular structure extends through the mesh on other 
orthogonal twist planes, until another fold or corner is reached. A corner occurs when a folded twist 
plane folds again in a perpendicular direction. Fig. 8 and 9 show a STC corner and the related 
hexahedral elements. 

3.6. Meshing algorithms derived from the STC 

The STC is a general description of constraints associated with a hexahedral mesh. As such, it 
may prove the basis of numerous algorithms, and perhaps existing algorithms could be recast in the 
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Fig. 6. The or thogonal i ty  state (left) and the mesh it defines (right). 

J 

Fig. 7. The STC fold (left) and the mesh it defines (right). 

Fig. 8. The front view of a STC corner (left) and the mesh it defines (right). 



146 P. Murdoch et al./ Finite Elements in Analysis and Design 28 (1997) 137-149 

J 

Fig. 9. The rear view of a STC corner (left) and the mesh it defines (right). 

terminology of the STC. Two algorithms described here are a Twist Plane Insertion procedure, 
a process conceived directly from STC definitions and whisker weaving, a somewhat abstract 
approach which is explained in detail by Tautges et al. [14]. Twist plane insertion can be used to 
generate an all hexahedral mesh when no existing surface mesh exists on the solid being meshed. 
Whisker weaving can be used when generating an all hexahedral mesh using an existing all 
quadrilateral surface mesh. 

The Twist Plane Insertion algorithm proceeds as follows. Twist planes are inserted one at a time 
into a 3D volume without the aid of a surface mesh. Correct connectivity is insured since each twist 
plane is inserted totally. Care needs to be taken to match the STC to the object's input faces and 
vertices. This process is easily visualized by considering Fig. 6 (left), 7 (left) and 8 (left). Six twist 
planes have been inserted into a box as depicted in Fig. 6, five twist planes have been inserted into 
a similar box as depicted in Fig. 7 and four twist planes have been inserted as depicted in Fig. 8. 
The geometric features of the twist planes uniquely define all faces and nodes of the all hexahedral 
mesh via the dual. The procedure could be enhanced by defining a local density function to dictate 
the distance between twist planes. This algorithm is geometrically complex because the insertion is, 
of necessity, performed in general 3-space. 

The whisker weaving algorithm takes the following approach. First, given an arbitrary solid, an 
arbitrary quadrilateral mesh of its surface is created. This quadrilateral surface mesh is then sorted 
into 2D surface loops. Each loop contains information about which other loops it crosses on the 
surface. These crossings indicate the beginning/ending locations of chords on the twist plane 
containing the loop. These crossings, or "whiskers," are then extended and intersected locally 
(woven). Chords are also joined: a joined chord is complete in the sense that it starts and ends on 
the surface mesh. Eventually, every whisker of every loop is complete and the algorithm terminates 
with a valid 3D STC. The main power of the algorithm is that the 3D meshing problem is reduced 
to a series of local problems on interdependent 2D sheets (twist planes flattened/projected into a 2D 
space). 

An example of this algorithm can be explained by beginning with a surface mesh as given in 
Fig. 8 (right). Surface loops are formulated as shown in Fig. 10 with each loop depicted with 
a different line type (i.e. solid, dashed, etc.). The surface loops, with an initial whisker labeled as 
a surface quadrilateral, are shown in Fig. 11. Note that each loop defines a separate twist plane. 
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Fig. 10. Surface mesh showing STC loops - front view (left), rear view (right). 
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Fig. 11. Loops depicted as 2D circles with whiskers labeled as surface quad. 
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Fig. 12. Whiskers 9, 6 and 3 woven to form element 1. 

The weaving process proceeds following the criteria that three chords, A, B, and C, are found such 
that A is adjacent to B, B is adjacent to C, and C is adjacent to A. Chords A and B lie on one twist 
plane, chords B and C lie on another twist plane, and chords C and A lie on yet another twist plane. 
The chords meeting this criteria are crossed forming an element. These steps are shown for a single 
element in Fig. 12 and 13. The process continues as shown in Fig. 14 and 15 until all the elements 
are formed. The whiskers are ultimately joined to complete the process, thus making chords 
continuous on any given twist plane. 

As shown by the interdependency of surface loops and twist planes, a surface mesh imposes 
certain global constraints on how the volume may be filled with hexahedra. Any three-dimensional 
hexahedral meshing algorithm that starts with a surface mesh must (implicitly) address these 
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Fig. 13. Relative position of element 1. 
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Fig. 14. Whiskers 5, 8 and 12 woven to form element 2, Whiskers 2, 4 and 10 woven to form element 3, and Whiskers 1, 7 
and 11 woven to form element 4. 

Fig. 15. Relative positions of elements 1, 2, 3, and 4. 
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constraints, whether or not the STC is used explicitly. The STC gives a natural representation of 
these constraints. Note that the input geometry imposes other constraints (due to desired element 
shape quality) that are not addressed by the STC itself. 

4. Conclusions 

The spatial twist continuum is a new way of representing a hexahedral mesh that captures 
inherent global connectivity structures. The STC identifies continuous twist planes, which are 
layers of hexahedra in the mesh. Twist planes intersect pairwise to form chords, which are stacks of 
elements within a layer. By definition, a chord cannot leave the twist planes that define it. These 
structures can guide mesh generation: given a partial mesh, it is easy to identify constraints on what 
the rest of the mesh must be like. This forms the foundation of the Whisker weaving algorithm [14]. 
The STC provides eL rich base from which to derive other meshing algorithms as well. 
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